Peramalan Nilai Penjualan Gas Elpiji 3 Kg di Sumatera Utara dengan bantuan Analisis Metode Jaringan Saraf Tiruan
Abstract
This research is related to forecasting the sales value of 3 Kg LPG in North Sumatra. The level of sales is influenced by customer satisfaction, service and customer needs. The purpose of this study is to determine the level of sales of 3 Kg LPG in North Sumatra and can overcome problems and overcome the amount of LPG demand in North Sumatra. So this research is needed using an artificial neural network method with a backpropagation algorithm to find the best sales results. The data used is divided into 2 parts, namely training and test data. The best network is taken from the Mean Square error (MSE) value and the smallest test. The experiments carried out in this study used a data rotation pattern, with 6 training and testing models. The experimental results of the 3-10-1 model are tests with the highest accuracy value, which is 100% and the MSE test is 0.00100005
References
F. Kuhua, A. R. Dilapanga, and J. Mantiric, “Jurnal Administro,” J. Adm., vol. 1, no. 1, pp. 05–09, 2019.
A. P. Windarto, “Implementasi JST Dalam Menentukan Kelayakan Nasabah Pinjaman KUR Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 1, no. 1, p. 12, 2017.
H. T. B. Tambunan, D. Hartama, and I. Gunawan, “Implementasi Jaringan Syaraf Tiruan ( JST ) Untuk Memprediksi Jumlah Penjualan Gas 3Kg Menggunakan Metode Backpropagation,” Tin Terap. Inform. Nusant., vol. 1, no. 9, pp. 479–488, 2021.
A. Wanto, J. Na’am, Yuhandri, A. P. Windarto, and Mesran, “Analisis Penurunan Gradien dengan Kombinasi Fungsi Aktivasi pada Algoritma JST untuk Pencarian Akurasi Terbaik,” J. Media Inform. Budidarma, vol. 4, no. 2018, pp. 1197–1205, 2020.
A. P. Windarto, M. R. Lubis, and S. Solikhun, “Implementasi JST pada Prediksi Total Laba Rugi Komprehensif Bank Umum dan Konvensional dengan Backpropagation,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, p. 411, 2018.
A. P. Windarto, M. R. Lubis, and L. R. Komprehensif, “IMPLEMENTASI JST PADA PREDIKSI TOTAL LABA RUGI KOMPREHENSIF IMPLEMENTATION OF NEURAL NETWORK IN PREDICTING TOTAL COMPREHENSIVE INCOME OF CONVENTIONAL COMMERCIAL BANKS USING,” vol. 5, no. 4, pp. 411–418, 2018.
A. P. Windarto, J. Na, and A. Wanto, “Bagian 2 : Model Arsitektur Neural Network dengan Kombinasi K- Medoids dan Backpropagation pada kasus Pandemi COVID-19 di Indonesia,” J. Media Inform. Budidarma, vol. 4, no. 4, pp. 1175–1180, 2020.
Budiharjo, T. Soemartono, A. P. Windarto, and T. Herawan, “Predicting tuition fee payment problem using backpropagation neural network model,” Int. J. Adv. Sci. Technol., vol. 120, pp. 85–96, 2018.
W. Saputra, A. P. Windarto, and A. Wanto, “Analysis of the Resilient Method in Training and Accuracy in the Backpropagation Method,” IJICS (International J. Informatics Comput. Sci., vol. 5, no. 1, pp. 52–56, 2021.
A. S. Rachman, I. Cholissodin, and M. A. Fauzi, “Peramalan Produksi Gula Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation Pada PG Candi Baru Sidoarjo Adi,” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 4, pp. 1683–1689, 2018.
J. Antares, “Artificial Neural Network Dalam Mengidentifikasi Penyakit Stroke Menggunakan Metode Backpropagation (Studi Kasus di Klinik Apotik Madya Padang),” Djtechno J. Teknol. Inf., vol. 1, no. 1, pp. 6–13, 2021.
F. Zola, “Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Prestasi Siswa,” J. Teknol. Dan Open Source, vol. 1, no. 1, pp. 58–72, 2018.
M. Andrijasa et al., “Penerapan Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Pengangguran di Provinsi Kalimantan Timur Dengan Menggunakan Algoritma Pembelajaran Backpropagation,” J. Inform. Mulawarman, vol. 5, no. 1, 2010.
A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” J. Penelit. Tek. Inform. Sink., vol. 2, no. 2, pp. 37–43, 2017.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Peramalan Nilai Penjualan Gas Elpiji 3 Kg di Sumatera Utara dengan bantuan Analisis Metode Jaringan Saraf Tiruan
Pages: 52-58
Copyright (c) 2022 Maulidya Rahma Siregar, Adinda Putri Azhari, Dedy Hartama, Agus Perdana Windarto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).