Normalisasi Data Kependudukan Dengan Model Min Max Dan Algoritma K-Means Untuk Pengelompokkan Tingkat Ekonomi Masyarakat
Abstract
Desidential data at Disdukcapil Deli Serdang has only been used for administrative purposes such as making certificates, ID cards, family cards, and others. Meanwhile, the data should be able to increase its usefulness functions such as classifying the economic level of the Deli Serdang Regency community. So far, many people feel disadvantaged because the distribution of government assistance to low-level economic communities is often misdirected, there are people who should get assistance but instead cannot, but there are people who are less deserving of assistance who can get assistance, this can be influenced by various factors such as kinship, closeness or other things. techniques are needed in classifying the economic level of the Deli Serdang Regency community based on certain criteria. The K-Means algorithm is one of the algorithms in data mining to classify certain data, for that it is very suitable to use the K-Means algorithm in classifying the economic level of the community.
References
D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.
M. M. K-means, A. Solichin, and K. Khairunnisa, “Klasterisasi Persebaran Virus Corona ( Covid-19 ) Di DKI Jakarta,” vol. 5, no. 2, 2020.
E. Buulolo and R. Syahputra, “Implementasi Algoritma Clustering K-Means Untuk Mengelompokkan Mahasiswa Baru Yang Berpotensi ( Studi Kasus : Stmik Budi Darma ),” vol. 2, no. September, pp. 17–24, 2019.
T. P. Sutriyani, A. M. Siregar, and D. S. Kusumaningrum, “Implementasi Algoritma K-Means terhadap Pengelompokan Nilai Ujian Nasional Tingkat SMP di Provinsi Jawa Barat,” Techno Xplore J. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 1, pp. 30–36, 2018, doi: 10.36805/technoxplore.v3i1.797.
A. D. Salman and B. A. Hussain, “Gene Expression Analysis via Spatial Clustering and Evaluation Indexing,” Iraqi J. Comput. Sci. Math., vol. 4, no. 1, pp. 24–34, 2023, doi: 10.52866/ijcsm.2023.01.01.004.
E. Buulolo, Data Mining Untuk Perguruan Tinggi. Yogyakarta: deepublish, 2020.
J. Suntoro, DATA MINING: Algoritma dan Implementasi dengan Pemrograman php. Elex Media Komputindo, 2019.
D. N. P. Sari and Y. L. Sukestiyarno, “Analisis cluster dengan metode K-Means pada persebaran kasus COVID-19 berdasarkan Provinsi di Indonesia,” in PRISMA, Prosiding Seminar Nasional Matematika, 2021, pp. 602–610.
M. R. Kusnaidi, T. Gulo, and S. Aripin, “Penerapan Normalisasi Data Dalam Mengelompokkan Data Mahasiswa Dengan Menggunakan Metode K-Means Untuk Menentukan Prioritas Bantuan Uang Kuliah Tunggal,” J. Comput. Syst. Informatics, vol. 3, no. 4, pp. 330–338, 2022.
W. Andriyani, A. H. Nasyuha, Y. Syahra, and B. Triaji, “Clustering Analysis of Poverty Levels in North Sumatra Province Using the Application of Data Mining with the K-Means Algorithm,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 4, pp. 1971–1979, 2023.
M. Herviany, S. P. Delima, T. Nurhidayah, and K. Kasini, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokkan Daerah Rawan Tanah Longsor Pada Provinsi Jawa Barat: Comparison of K-Means and K-Medoids Algorithms for Grouping Landslide Prone Areas in West Java Province,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 34–40, 2021.
I. Ramadhani and M. Megawati, “Implementasi Algoritma K-Means Untuk Klustering Data Produktivitas Kelapa Sawit: Implementation Of K-Means Algorithm For Palm Oil Productivity Data Clustering,” Indones. J. Inform. Res. Softw. Eng., vol. 3, no. 1, pp. 56–64, 2023.
F. Juliawati, R. Buaton, and R. Saragih, “Pengelompokan Data Mining Penerimaan Bantuan Pangan Non Tunai (BPNT) Menggunakan Metode Clustering (Studi Kasus: Kantor Desa Payabakung Hamparan Perak),” Explorer (Hayward)., vol. 3, no. 2, pp. 69–76, 2023.
Z. Nabila, A. R. Isnain, P. Permata, and Z. Abidin, “Analisis data mining untuk clustering kasus covid-19 di Provinsi Lampung dengan algoritma k-means,” J. Teknol. Dan Sist. Inf., vol. 2, no. 2, pp. 100–108, 2021.
A. Yudistira and R. Andika, “Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering,” J. Artif. Intell. Technol. Inf., vol. 1, no. 1, pp. 20–28, 2023.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Normalisasi Data Kependudukan Dengan Model Min Max Dan Algoritma K-Means Untuk Pengelompokkan Tingkat Ekonomi Masyarakat
Pages: 53-63
Copyright (c) 2024 Wenny Wenny

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).